

X = 3.65 mm Y = 2.72 mm

Product Features

RF frequency: 34 to 36 GHz

■ Linear Gain: 19.5 dB typ.

■ Psat: 37.5 dBm typ.

■ PAE Max @ 25% typ.

■ Die Size: < 6.3 sq. mm.

0.2 um GaN HEMT

■ 4 mil SiC substrate

■ DC Power: 28 VDC @ 432 mA

Applications

Military Radar Systems

Not suitable for all applications.

May not meet specific MilSpec requirements.

Product Description

The APN173 monolithic GaN HEMT amplifier is a broadband, two-stage power device, designed for use in Military Radar Systems. To ensure rugged and reliable operation, HEMT devices are fully passivated. Both bond pad and backside metallization are Au-based that is compatible with epoxy and eutectic die attach methods.

Performance Characteristics (Ta = 25°C)

Specification	Min	Тур	Max	Unit
Frequency	34		36	GHz
Linear Gain	18	19.5	_	dB
Input Return Loss	4.5	6		dB
Output Return Loss	10	13		dB
P1db		TBD		dBm
Psat	37	37.5		dBm
PAE @ Psat	-	24		%
Max PAE		25		%
Vd1, Vd2	20		28	V
Vg1		-4.5		V
Vg2		-4.5		V
ld1		144		mA
ld2		288		mA

On wafer measured Performance Characteristics (Typical Performance at 25°C) Vd = 28 V, Id1 = 144 mA, Id2 = 288 mA. *

^{*}Pulsed-power on-wafer

Die Size and Bond Pad Locations (Not to Scale)

X = 3650 μm \pm 25 μm Y = 1720 \pm 25 μm E DC Bond Pad = 100 E 100 E 0.5 μm RF Bond Pad = 100 E 100 E 0.5 μm E Chip Thickness = 101 E 5 μm

Biasing/De-Biasing Details:

Listed below are some guidelines for GaN device testing and wire bonding:

- a. Limit positive gate bias (G-S or G-D) to < 1V
- b. Know your devices' breakdown voltages
- c. Use a power supply with both voltage and current limit.
- d. With the power supply off and the voltage and current levels at minimum, attach the ground lead to your test fixture.
 - i. Apply negative gate voltage (-5 V) to ensure that all devices are off
 - ii. Ramp up drain bias to ~10 V
 - iii. Gradually increase gate bias voltage while monitoring drain current until 20% of the operating current is achieved
 - iv. Ramp up drain to operating bias
 - v. Gradually increase gate bias voltage while monitoring drain current until the operating current is achieved
- e. To safely de-bias GaN devices, start by debiasing output amplifier stages first (if applicable):
 - i. Gradually decrease drain bias to 0 V.
 - ii. Gradually decrease gate bias to 0 V.
 - iii. Turn off supply voltages
- f. Repeat de-bias procedure for each amplifier stage

Recommended Assembly Notes

- 1. Bypass caps should be 100 pF (approximately) ceramic (single-layer) placed no farther than 30 mils from the amplifier.
- 2. Best performance obtained from use of <10 mil (long) by 3 by 0.5 mil ribbons on input and output.
- 3. Part must be biased from both sides as indicated.
- 4. The 0.1uF, 50V capacitors are not needed if the drain supply line is clean. If Drain Pulsing of the device is to be used, do **NOT** use the 0.1uF, 50V Capacitors.

Mounting Processes

Most NGAS GaN IC chips have a gold backing and can be mounted successfully using either a conductive epoxy or AuSn attachment. NGAS recommends the use of AuSn for high power devices to provide a good thermal path and a good RF path to ground. Maximum recommended temp during die attach is 320°C for 30 seconds.

Note: Many of the NGAS parts do incorporate airbridges, so caution should be used when determining the pick up tool.

CAUTION: THE IMPROPER USE OF AUSn ATTACHMENT CAN CATASTROPHICALLY DAMAGE GaN CHIPS.

PLEASE ALSO REFER TO OUR "Gan Chip Handling Application Note" BEFORE HANDLING, ASSEMBLING OR BIASING THESE MMICS!